COMPUTATIONAL ANALYSIS OF PHOTON SAIL PARAMETERS

-ALEX KELLER-

Advisor: Dr. George Spagna Randolph-Macon College April 2018

PROJECT SUMMARY

- Inspired by Breakthrough Starshot Initiative
- Computational Model in Python
- Objective: Determine most efficient
 means of maximizing velocity

BACKGROUND – SPACE TRAVEL

- Rockets are expensive, "slow" peak velocities, time consuming
- Roughly \$400 billion to send a manned vessel to Mars (only about 40 million miles away), several months to get there
- We want to go further rockets remain prisoner to Newton's 2nd Law
- Juno spacecraft fastest ever only at 45 mi/s (0.025 % c) 17,000 yrs. to Alpha Centauri
- We need to go faster for cheaper

BACKGROUND – PHOTON SAILS

- Alternative means of space travel
- Originally proposed by Carl Sagan
- Large, thin, durable, reflective material used
- Exploits the momentum carried by photons (light particles)
- Solar sails inefficient, so we provide a stronger light source (Laser)

MY MODEL

- 1-Dimensional Simulation in Python
- Determine the factors that would affect Photon Sail's propulsion
- Derive an equation for the instantaneous acceleration of the craft
- Run trials by changing different parameters in order to find most efficient means of reaching maximum velocity

THEORY

What will affect how fast the sail is propelled?

- ➤ Sail's surface area
- > Laser's wavelength, size, and power
- Instantaneous distance and velocity of the craft
- Mass of the craft and its payload
- > Sail material's albedo
- Radiation Pressure from the Sun
- > Doppler Red-shift at relativistic speeds

THE INSTANTANEOUS ACCELERATION EQUATION

$$\vec{a}_{i} = \kappa * \frac{SA}{\pi * m_{rel} * c} * \frac{\sqrt{1 - \frac{\vec{v}_{i-1} + \vec{a}_{i-1} * t_{step}}{c}}}{\sqrt{1 + \frac{\vec{v}_{i-1} + \vec{a}_{i-1} * t_{step}}{c}} * \left(\frac{P_{0}}{\left(\left\{ \left[d_{i-1} + \vec{v}_{i-1} * t_{step} + \frac{1}{2} \vec{a}_{i-1} * (t_{step})^{2} \right] * \tan\left(1.22 \frac{\lambda_{0}}{D}\right) \right\} + \frac{D}{2} \right)^{2}} + \frac{L_{sun}}{4 \left(\left[d_{i-1} + \vec{v}_{i-1} * t_{step} + \frac{1}{2} \vec{a}_{i-1} * (t_{step})^{2} \right] * \tan\left(1.22 \frac{\lambda_{0}}{D}\right) \right\} + \frac{D}{2} \right)^{2}}$$

 Derived using basic version of Newton's 2nd Law:

 $\vec{a} = \frac{\vec{F}}{m}$

Force all from
 Radiation Pressure

$$\vec{F}_{rad} = \frac{I * SA}{c}$$

Key:

 $\vec{a}_i = \text{acceleration after time step } i \quad \kappa = \text{albedo correction factor} \quad c = \text{speed of light (m/s)}$ $m_{rel} = \text{relativistic mass correction} \quad \pi = \text{pi} \quad \vec{v}_i = \text{velocity after time step } i$ $t_{step} = \text{time step or } \Delta t \quad 1 \text{ AU} = \text{one astronomical unit (m)} \quad SA = \text{sail's surface area}$ $\lambda_0 = \text{initial wavelength of laser} \quad D = \text{diameter of laser collective aperture}$ $L_{Sun} = \text{luminosity of the Sun} \quad P_0 = \text{output power of laser} \quad d_i = \text{position after time step } i$

- Intensity constantly changing, thus acceleration is constantly changing
- Laser's Wavelength
- Laser's Power
- Laser Array Diameter
- Doppler Red shift

IMPLEMENTING THE CODE

def newAcceleration(prevDistance, prevVelocity, prevAcceleration, sailArea, totalRelativisticMass, laserPower, laserWavelength, laserDiameter): rayleighAngle = (1.22*laserWavelength)/(laserDiameter) beamArea = ((m.tan(rayleighAngle))*(prevDistance)+laserDiameter/2)**2 intensity = laserPower/beamArea redshiftCorrection = (m.sqrt((1-prevVelocity/c)/(1+prevVelocity/c))) af = (redshiftCorrection)*(sailArea/(pi*totalRelativisticMass*c))*((() intensity)) + (Lsun)/(4*((prevDistance+xls)**2))) return af

Acceleration equation: foundation of the program

G,

- Problem: Instantaneous acceleration depended on the instantaneous distance • and velocity, and the instantaneous distance and velocity depended on the instantaneous acceleration
- Solution: Time-steps (the i and i-1 subscripts) new a found by previous d & v

$$\vec{a}_{i} = \kappa * \frac{SA}{\pi * m_{rel} * c} * \frac{\sqrt{1 - \frac{\vec{v}_{i-1} + \vec{a}_{i-1} * t_{step}}{c}}}{\sqrt{1 + \frac{\vec{v}_{i-1} + \vec{a}_{i-1} * t_{step}}{c}}} * \left(\frac{P_{0}}{\left(\left\{ \left[d_{i-1} + \vec{v}_{i-1} * t_{step} + \frac{1}{2} \vec{a}_{i-1} * (t_{step})^{2} \right] * \tan\left(1.22 \frac{\lambda_{0}}{D}\right) \right\} + \frac{D}{2} \right)^{2}} + \frac{L_{sun}}{4 \left(\left[d_{i-1} + \vec{v}_{i-1} * t_{step} + \frac{1}{2} \vec{a}_{i-1} * (t_{step})^{2} \right] * \tan\left(1.22 \frac{\lambda_{0}}{D}\right) \right\} + \frac{D}{2} \right)^{2}}$$

BASIC TRENDS OF CRAFT'S JOURNEY

Velocity vs. Time

DATA AND RESULTS

Trial	Laser Output Wattage (GW)	Laser Wavelength (nm)	Sail Dimensions (m)	Laser Array Diameter (m)	Total Mass (kg)	Max Velocity (%c)	Time to Proxima Centauri (yr)
BSI*	100	700 (red light)	4 x 4	100	0.003	1.7	248.6
1	100	700 (red light)	100 x 100	100	0.0594	9.32	45.3
2	100	550 (green light)	100 x 100	100	0.0594	10.48	40.3
3	100	400 (violet light)	100 x 100	100	0.0594	12.21	34.5
4	100	300 (ultra-violet light)	100 x 100	100	0.0594	14.01	30.1
5	250	550 (green light)	100 x 100	100	0.0594	16.22	26
6	500	550 (green light)	100 x 100	100	0.0594	22.39	18.8
7	750	550 (green light)	100 x 100	100	0.0594	26.91	15.7
8	1000	550 (green light)	100 x 100	100	0.0594	30.59	13.4
9	100	550 (green light)	4 x 4	100	0.003	1.92	220.2
10	100	550 (green light)	10 x 10	100	0.0061	3.36	125.7
11	100	550 (green light)	50 x 50	100	0.00281	7.69	54.8
12	100	550 (green light)	100 x 100	100	0.0594	10.48	40.3
13	100	550 (green light)	200 x 200	100	0.1346	13.76	30.7
9	100	550 (green light)	100 x 100	10	0.0594	8.98	47
10	100	550 (green light)	100 x 100	50	0.0594	10.43	40.5
.11	100	550 (green light)	100 x 100	100	0.0594	10.48	40.3
12	100	550 (green light)	100 x 100	200	0.0594	10.49	40.2
13	100	550 (green light)	100 x 100	350	0.0594	10.49	40.2
14	100	550 (green light)	100 x 100	100	0.0594	10.48	40.3
15	100	550 (green light)	100 x 100	100	0.0634	10.15	41.6
16	100	550 (green light)	100 x 100	100	0.0684	9.79	43.1
17	100	550 (green light)	100 x 100	100	0.1584	6.51	64.8
18	100	550 (green light)	100 x 100	100	~1	2.63	160.7
19**	100	550 (green light)	100 x 100	100	0.0634	10.16	42.6

CONCLUSION

Max Velocities are reached when:
Decreasing Laser's wavelength
Increasing Laser's output power
Laser Array diameter around 100 meters
Increasing Sail's surface area (below threshold)
Minimizing craft's overall mass

• Only ideal for gram-scale crafts

• Human-based interstellar travel with photon sails unrealistic

MORE TO CONSIDER:

- Universe is 3-D –complex system entails extreme accuracy needed
- Keeping the laser pointed at the craft for several hours / days
- Steering the craft
- Other bodies within the solar system (big and small)
- Collisions with particles at high speeds
- Durability, heat capacity, protecting the microchip
- Collecting data during fly-bys at relativistic speeds
- Financial burden research, materials, powering the laser, placing crafts in HAO
- Ground-based laser would experience atmospheric interference