Spectral Analysis Using Excel

P. Tran

John Tyler Community College

Overview

Calculating Fourier transform using Excel.

Spectral analysis of sound from a guitar.

Applications of Fourier Transform

Signal processing

Quantum mechanics: solving the time-dependent Schrödinger equation

Evolution of a Wave Packet in a 1D Potential

$$i\hbar\frac{\partial\psi}{\partial t} = H\psi$$

$$H = \frac{(\hbar k)^2}{2m} + V(x)$$

$$\psi(x,t) = e^{-i\frac{H}{\hbar}t} \psi(x,0)$$

$$\psi(x,\Delta t) \cong e^{-\frac{i}{\hbar}V(x)\frac{\Delta t}{2}}e^{-\frac{i(\hbar k)^2}{\hbar 2m}\Delta t}e^{-\frac{i}{\hbar}V(x)\frac{\Delta t}{2}}\psi(x,0)$$

Evolution of a Wave Packet in a 1D Potential

$$\psi(x,\Delta t) \cong e^{-\frac{i}{\hbar}V(x)\frac{\Delta t}{2}}e^{-\frac{i(\hbar k)^2}{\hbar 2m}\Delta t}e^{-\frac{i}{\hbar}V(x)\frac{\Delta t}{2}}\psi(x,0)$$

Diagonal in real space

$$\psi_1(x,\Delta t) = e^{-\frac{i}{\hbar}V(x)\frac{\Delta t}{2}}\psi(x,0)$$

Diagonal in *k* space

$$\psi_2(x,\Delta t) = e^{-\frac{i(\hbar k)^2}{\hbar 2m}\Delta t}\psi_1(x,\Delta t)$$

Diagonal in real space

$$\psi(x,\Delta t) = e^{-\frac{i}{\hbar}V(x)\frac{\Delta t}{2}}\psi_2(x,\Delta t)$$

Why Excel?

Want a computing platform that all students can have access to.

Nuts and Bolts

$$f(\omega_i) = \int f(t) e^{-i\omega_i t} dt$$

Don't calculate all components at once: too much typing.

Use iterative option of Excel.

Calculate the ith component during the ith iteration. Save for use later.

Data		Da	ta × w	< window															
t _i		Window	,	$\cos(\omega_n t_i)$															
A	в	¢		E	F	G	н	I	J	К	L	м	N	0	P	Q	R	S	Т
512	N=	1024											_			F	(t)		
						Re(f(w))	Im(f(w))	lf(w)					1.20						
						8.94E-05	-2.21E-05	9.21E-05					1.00		^				
•	•	+	•	•	•								0.80		/`	\			
index	f(t)	window W(t)	f(t)W(t)	cos(wt)	sin(wt)	f(t)W(t)cos(wt)	f(t)W(t)sin(wt)		i	f(w)	Re(f(w))	Im(f(w))	0.60						
0	0.017	1.60E-28	2.73E-30	1.00E+00	0.00E+00	2.73E-30	0.00E+00		0	8.84E-04	-8.84E-04	0.00E+00	0.40		dim.l.m.	.\			— F(t)
1	0.014	2.06E-28	2.88E-30	-1.00E+00	6.14E-03	-2.88E-30	1.77E-32		1	8.51E-04	8.51E-04	-8.99E-07	£ 0.20		1	id Minut	dining data tan		(i)
2	0.004	2.64E-28	1.06E-30	1.00E+00	-1.23E-02	1.06E-30	-1.30E-32		2	7.58E-04	-7.58E-04	1.88E-06	-0.20	200	400 141	1600-UM	800 100) 1200	- VVIIII
3	0.004	3.39E-28	1.36E-30	-1.00E+00	1.84E-02	-1.35E-30	2.49E-32		3	6.26E-04	6.26E-04	-3.15E-06	-0.40	الالمليل ولي	and and a set of the				
4	-7.01E-04	4.34E-28	-3.04E-31	1.00E+00	-2.45E-02	-3.04E-31	7.47E-33		4	4.79E-04	-4.79E-04	5.05E-06	-0.60						
5	-0.013	5.56E-28	-7.23E-30	-1.00E+00	3.07E-02	7.23E-30	-2.22E-31		5	3.41E-04	3.41E-04	-7.93E-06	-0.80						
6	-0.02	7.12E-28	-1.42E-29	9.99E-01	-3.68E-02	-1.42E-29	5.24E-31		6	2.26E-04	-2.26E-04	1.20E-05	-1.00			te devi			
7	-0.026	9.12E-28	-2.37E-29	-9.99E-01	4.29E-02	2.37E-29	-1.02E-30		7	1.42E-04	1.41E-04	-1.71E-05				Index			
8	-0.027	1.17E-27	-3.15E-29	9.99E-01	-4.91E-02	-3.15E-29	1.55E-30		8	8.65E-05	-8.35E-05	2.25E-05							
9	-0.019	1.49E-27	-2.83E-29	-9.98E-01	5.52E-02	2.83E-29	-1.56E-30		9	5.61E-05	4.90E-05	-2.73E-05				F(w)		
10	-0.023	1.91E-27	-4.39E-29	9.98E-01	-6.13E-02	-4.38E-29	2.69E-30		10	4.29E-05	-3.01E-05	3.05E-05	0.0140						
11	-0.017	2.44E-27	-4.14E-29	-9.98E-01	6.74E-02	4.13E-29	-2.79E-30		11	3.79E-05	2.09E-05	-3.15E-05	0.0400						
12	-0.005	3.11E-27	-1.56E-29	9.97E-01	-7.36E-02	-1.55E-29	1.14E-30		12	3.51E-05	-1.74E-05	3.04E-05	0.0120		1	t	;		
13	-0.003	3.97E-27	-1.19E-29	-9.97E-01	7.97E-02	1.19E-29	-9.49E-31		13	3.28E-05	1.72E-05	-2.80E-05	0.0100						
14	0.006	5.06E-27	3.04E-29	9.96E-01	-8.58E-02	3.03E-29	-2.61E-30		14	3.17E-05	-1.91E-05	2.54E-05	_ 0.0080						
15	0.016	6.46E-27	1.03E-28	-9.96E-01	9.19E-02	-1.03E-28	9.49E-30		15	3.26E-05	2.26E-05	-2.36E-05				·			
16	0.016	8.23E-27	1.32E-28	9.95E-01	-9.80E-02	1.31E-28	-1.29E-29		16	3.54E-05	-2.70E-05	2.28E-05			•	•	••		
17	0.022	1.05E-26	2.31E-28	-9.95E-01	1.04E-01	-2.29E-28	2.40E-29		17	3.89E-05	3.18E-05	-2.24E-05	0.0040			•	••		
18	0.017	1.33E-26	2.27E-28	9.94E-01	-1.10E-01	2.25E-28	-2.50E-29		18	4.14E-05	-3.58E-05	2.08E-05	0.0020		1 3	•			
19	0.009	1.70E-26	1.53E-28	-9.93E-01	1.16E-01	-1.52E-28	1.78E-29		19	4.15E-05	3.79E-05	-1.67E-05	0.0000			-	للميلا	had	
20	0.002	2.16E-26	4.32E-29	9.92E-01	-1.22E-01	4.29E-29	-5.29E-30		20	3.88E-05	-3.76E-05	9.39E-06	0		100	200	300	400	500
21	-0.002	2.74E-26	-5.49E-29	-9.92E-01	1.28E-01	5.44E-29	-7.05E-30		21	3.47E-05	3.47E-05	6.10E-07	-				Index		
22	-0.017	3.49E-26	-5.93E-28	9.91E-01	-1.35E-01	-5.87E-28	7.98E-29		22	3.22E-05	-3.00E-05	-1.16E-05							
23	-0.023	4.43E-26	-1.02E-27	-9.90E-01	1.41E-01	1.01E-27	-1.43E-28		23	3.29E-05	2.48E-05	2.15E-05							

Be Careful

Excel calculates from left to right and top down for each iteration.

So make sure instructions are in the correct order.

Not FFT

Can program to do FFT.

But too complex, and the gain in computation time for the data size is not worth it.

Tuning Fork (384 Hz)

Usual Standing Wave Experiment

Wouldn't it be more interesting to do an experiment with a musical instrument?

Standing Wave on a Guitar

Frequency vs 1/Length

Frequency vs Wave Speed

Strength vs Time

What Else?

Pluck the string at different positions to see how that affects the composition of the different harmonics.

Benefits Over Old Experiment

Students can see how physics works in a real life application.

Teach the principle of superposition of waves.

Difficulty

We only have one guitar.

Solution: ask students to bring in their own if they have one.

Thank you