

Using X-Ray Fluorescence Spectrometry for the Application of Moseley's Law

Pegah Avazpour¹, Thaina Brito², Perry Wood³, Debra Ellis³

1-University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 2- University of Maryland, College Park, MD 20742,

3-Department of Science, Frederick Community College, 7932 Opossumtown Pike, Frederick, MD

Henry Moseley

- 1887-1915
- 1906: Admitted to University of Oxford's Trinity College
- 1910: Joined Ernest Rutherford's research group
- 1911: Studied Antonius van den Broek's hypothesis of the atomic number
- 1912: Developed X-ray spectrum analysis to study atomic structure
- 1913: He published experimental results known as "Moseley's Law"

Moseley's law

Empirical law that shows a linear relationship between the square root of an x-ray emission frequency and the atomic number of an element

 $\sqrt{\mathbf{v}} = a (Z-b)$

- Z = atomic number of element
- a = constant depending on spectral line
- b = screening effect constant that depends on the spectral line
 - b=1 for K α
 - b=7.4 for La

Moseley's law: Understanding constants

- Moseley's law supports and expands previous laws and concepts
- Various scientists such as Rutherford, Rydberg and Bohr were also working on atomic structure at the time
- Rydberg's formula

$$\frac{\nu}{c} = \frac{1}{\lambda} = \frac{Z^2 e^4 m}{8\epsilon_0^2 h^3 c} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$

$$R = \frac{-E_0}{h c} = \frac{m_e e^4}{(4\pi)^3 \epsilon_0^2 \hbar^3 c} = 1.097 \times 10^7 \,\mathrm{m}^{-1}.$$

- $\lambda \equiv Wavelength$
- $R \equiv \text{Rydberg constant}$
- $Z\equiv$ Atomic number
- $n \equiv \text{Integers} : n_1 < n_2$

Moseley's law: Understanding constants

- Calculate the change in energy, which is proportional to $\left(\frac{1}{n_1^2} \frac{1}{n_2^2}\right)$
- Multiply c on both sides of the equation to derive the general equations
- Calculating $\boldsymbol{\nu}$ for K $\boldsymbol{\alpha}$ and L $\boldsymbol{\alpha}$ lines:

$$egin{aligned} f\left(K_lpha
ight) &= \left(3.29 imes10^{15}
ight) imes3/4 imes\left(Z-1
ight)^2
ight.$$
 Hz $f\left(L_lpha
ight) &= \left(3.29 imes10^{15}
ight) imes5/36 imes\left(Z-7.4
ight)^2
ight.$ Hz

Moseley's law: Proof of a linear relation

Importance of Moseley's work

- Improving the Periodic Table
- Better organization of the elements in order of their atomic number
- Difference between Ni, Co, I and Te based on their atomic numbers
- Modern definition of atomic number
- Linear relationship between atomic number and x-ray emissions.

X- Ray Fluorescence Spectrometer

X- Ray Fluorescence Spectrometer

- Physics 205
 - General physics III; Continues sequence PY 203-204, with emphasis on modern physics. Includes atomic and nuclear physics.
- Purpose:
 - Prove of Rydberg constant
 - Prove linear relation of x- ray emission frequencies and atomic number
 - Identifying an unknown

1. First part:

1-Using XRF to get the data for keV of several element.

Frederick Community College

2-Calculate the frequency based on the Kev and atomic number.

	А	В	С	D	Е	F
1	KeV	Z	E (J)	f (Hz)	√f (√Hz)	
2	0	0	0.0000E+00	0.0000E+00	0.0000E+00	
3	3.6801	20	5.8882E-16	8.8811E+17	9.4240E+08	
4	5.3826	24	8.6122E-16	1.2990E+18	1.1397E+09	
5	6.3022	26	1.0084E-15	1.5209E+18	1.2332E+09	
6	8.0484	29	1.2877E-15	1.9423E+18	1.3937E+09	
7						

Second part: Identifying Unknown

Experimental challenges

- The difference between $L\alpha$ or $K\alpha$.
- Unclear and messy spectrums
- Lα contains several marker lines
- X Ray emission
- Working with toxic compounds
- XRF could not recognize elements below Ne.

Acknowledgments

This project was supported by Hood College, Frederick Community College, and Mount St. Mary's University and funded through the National Science Foundation's Improving Undergraduate STEM Education program (DUE-1431522).

HOOD COLLEGE | MOUNT SAINT MARY'S | FREDERICK COMMUNITY COLLEGE

