> CSAAPT Saturday

Loyola University

Demonstration: The Loop-the-Loop Pendulum

Carl E. Mungan

Physics Department

Initial point i and final point f must be at the same height, for example $h=r$ here.

PROBLEM STATEMENT

At what minimum initial height h must the bob be released so that the string smoothly wraps around the peg?

PLEASE ANSWER AS IF YOU WERE A STUDENT!

Let's try $h=2 r$.

We need $v>0$ at the top of the small circle!

THEORY: combined energy \& force analysis

First we need to draw a FBD even to do the energy analysis. How come?

Because $E_{\text {mech }}$ is conserved if and only if $W_{\text {nc }}=0$.

$W_{\mathrm{nc}}=W_{T}=0$ since the tension and bob's motion are perpendicular

ENERGY ANALYSIS: $E_{\text {mech }}=K+U_{\mathrm{g}}=$ constant

$$
\begin{aligned}
& E_{\text {mech,initial }}=0+m g h \quad(\text { released from rest at } h) \\
& =E_{\text {mech,final }}=\frac{1}{2} m v^{2}+m g 2 r \quad(\text { at top of small circle })
\end{aligned}
$$

$$
\therefore v^{2}=g(2 h-4 r)
$$

this equation relates v to h

$$
\begin{gathered}
\text { FORCE ANALYSIS: } \Sigma F=m a \\
T+m g=m \frac{v^{2}}{r}(\text { at top of small circle })
\end{gathered}
$$

If the bob just makes it around, what is happening to the string?

It's on the verge of collapsing so $T \rightarrow 0$.
(Similar to the vertically spun water bucket when $N \rightarrow 0$.)
so $m g=m \frac{v^{2}}{r}$ but we had $v^{2}=g(2 h-4 r)$

$$
\therefore r=2 h-4 r \Rightarrow h=\frac{5}{2} r
$$

Let's try $h=2.5 r$ which here happens to equal L.
(This demo works much better than the marble loop-the-loop because the marble has too much friction.)

