Human Sundials

Create a uniquely interactive "sun clock" that uses a person's shadow to tell correct time

True School Project

Ecological
Educational
Fun
Practical
Unique
Permanent or
Temporary
Accurate

CONTENT

1. About the project
2. How Sunclock „,works"?
3. What's „analemma"?
4. Layout making process?
5. How to make sunclock using our layout plan?
6. How to determine „true north"?
7. Measurements „on the ground"
8. Finalize your project
9. Info

How Sunclock works?

- Earth around the Sun - changeable movement
- "Sun" time = local time on the belonging meridian
- „Zone" time = agreement made by man

Northen spring

Northern winter/ Southern wammer

Our Preconceived Notions

- The Sun rises exactly in the East and sets exactly in the West each day. T/F
- The Sun is directly overhead once a day. T/F
- The Moon is sometimes visible in the daytime. T/F
- The shadow of a vertical stick at solar Noon is aligned N-S. T/F

What's Happening with the Sun

Set the Scene

- Earth rotates counterclockwise itself and around the sun
- Sun's rays arrive on Earth as parallel beams

The Relationship Between Time and Longitude

Equivalence of Arc and Time	
Time to Arc	Arc to Time
$24 \mathrm{~h}=360^{\circ}$	$360^{\circ}=24 \mathrm{~h}$
$\mathrm{I}=15^{\circ}$	$1^{\circ}=4 \mathrm{~m}$
$I \mathrm{~m}=15^{\circ}$	$1^{\prime}=4 \mathrm{~s}$
$1 \mathrm{~s}=15^{\prime \prime}$	

World Time Zones

Origins of the Analemma

It is the summation of two effects:

- The Earth's orbit around the sun is not a circle, but is an ellipse (elliptical orbit effect).
- The Earth's axis is tilted 23.5° relative to its plane of orbit around the sun (tilted axis effect).

Analemma - Sun „eight"

"Sun movement" on the sky throughout the year
"Copied" analemma on the date scale

Elliptical Orbit Effect

Detail of Effects of Orbit and Changing speed

Equation-of-Time Graph for One Year - Elliptical Orbit

Equation-of-Tme Graph for One Year - Tilt $=23.43^{\circ}$

Total Effect Tilt + Elliptical Orbit

The
 Analemma Curve

Tools for
Construction

- A piece of Chalk
- A Long Tape Measure
- A

Straightedge

- (Yardstick or longer)

Measurement point marking

You will need a minimum area of 22×15 feet

Result of the layout making process

First, we need to set up a N-s line and a E-W line. But how do we find True North?

- Use a Compass
- Use a GPS unit
- Use a Map
- Use Polaris
- Use the Sun

Using a compass and Earth's Magnetic Field

Where is the North Magnetic Pole?

Magnetic Declination Observations at San Francisco, California ($1783-1961$) and IGRF Models (1965-1995)

Magnetic Declination in the US

How to determine „true North"?

- First step when using our layout plan
- Determine N-S direction using shadow

Measurement point marking

Jan	-38
Feb	-28
Mar	-12
Apr	7
May	25
Jun	38
Jul	40
Aug	30
Sep	14
Oct	-4
Nov	-22
Dec	-36

Time	x	y	
	12:00 PM	3	76
	1:00 PM	34	73
	2:00 PM	62	65
	3:00 PM	87	52
	4:00 PM	105	36
	5:00 PM	117	18
	6:00 PM	120	-2
	7:00 PM	115	-21
	8:00 PM	102	-39
	9:00 PM	83	-55
	10:00 PM	58	-67
	11:00 PM	28	-74
	12:00 AM	-3	-76
	1:00 AM	-34	-73
	2:00 AM	-62	-65
	3:00 AM	-87	-52
	4:00 AM	-105	-36
	5:00 AM	-117	-18
	6:00 AM	-120	2
	7:00 AM	-115	21
	8:00 AM	-102	39
	9:00 AM	-83	55
	10:00 AM	-58	67
	11:00 AM	-28	74

„Ring" elements marking

Analemmatic Sundial PDF Generator

Detailed instructions for using this script are given in my Instructable for it.
For a small, paper sundial project, go here.

Enter location parameters

You must enter the width of the sundial you wish to build, enter either a zip code or latitude/longitude, and select your timezone and daylight savings option. Required options are in bold.

```
Sundial width: 360 cm V
Zip code: 20878 or Latitude:\square and Longitude:
Time zone: Eastern Standard Time (North America) (UTC-05) V
Daylight savings:
No daylight savings at my location
Put summer time on sundial
OPut winter time on sundial
Numerals: Arabic
\ Include (x,y) coordinates of hour points
Location name: Gaithersburg
(e.g., "Paris" or "My backyard")
\checkmark \text { Include dimensions and instructions}
Go!
```


Step 2: Draw the axes

Make sure to align the N arrow to true north (not magnetic)

Step 3: Draw the ellipse

Use a loop of length 639.3 cm to draw ellipse.

Step 4a: Draw the hour labels

Step 4b: Verify hour label distances

Step 5: Draw monthly gnomon position tickmarks

Put the tickmarks at the indicated distances from the horizontal line.

Step 6: Indicate monthly gnomon positions

That's all, Folks!

Thanks for your Time and Attention

