

Parallel Programing to Investigate Earthquake Statistics

Eric Montag Randolph-Macon College Department of Physics April 23,2016 AAPT Chesapeake Section Spring Meeting

Outline

General Earthquake Information

Earthquake Models

Earthquake Statistics

Parallel Computing

Castellaro and Mulargia method (2003)

Our new method

Results

Future Research

General Earthquake Knowledge

One of the most destructive natural disasters

- 2011 in Japan, a magnitude 9.0 caused 309 billion dollars of damage
- 2010 in Haiti, a magnitude 7.0 caused 14 billion dollars of damage

Earthquake Faults

Photo credit: http://www.swinglecollins.com

Earthquake Models

Slip Stick

Olami-Feder-Christensen (OFC) Model

- Produces Earthquakes based on a variant of the slip stick model (2 dimensional) and is inherently sequential
- Uniform threshold stress for all sites
- Adjustable parameters
 - Lattice Size
 - Stress Transfer Range (R)
 - Stress dissipation (α)

Earthquake Statistics

Richter scale measures size of earthquakes

- Logarithmic scale
- Ex: Magnitude 9.0 earthquake is 100 times stronger then a 7.0

Gutenberg-Richter scaling

Earthquake statistics in the OFC model

- The model produces Gutenberg-Richter statistics
- Good statistics require long computation times

GLOBAL SEISMICITY

Parallel Computing

Computer architecture

- Divides work among processors
- Speeds up computation by a factor of n

Problem with sharing

http://www.mathworks.com

Castellaro and Mulargia method (2003)

Connected computers together (cluster)

Experienced major problems due to sharing

Photo credit: http://www.wisegeek.com

Photo credit: http://www.mathworks.com

Our new method

Used one computer with multiple processors

• Versus a cluster of multiple computers

Sharing memory

- Versus sending information over a network
- Split the lattice up into strips

• Versus squares

Summary and Future Research

This algorithm provides a proof of concept for a parallel algorithm on a Graphing processing unit (GPU)

Asperities/ Damage sites

Networks of interacting Earthquakes

Acknowledgments

Schapiro Undergraduate Research Fund

Doctor Rachele Dominguez

Doctor Rance Necaise

Questions

